Higher-order operator splitting methods for deterministic parabolic equations
نویسنده
چکیده
منابع مشابه
An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime
In this paper, we are concerned with the derivation of a local error representation for exponential operator splitting methods when applied to evolutionary problems that involve critical parameters. Employing an abstract formulation of differential equations on function spaces, our framework includes Schrödinger equations in the semi-classical regime as well as parabolic initial-boundary value ...
متن کاملDefect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems
In this work, defect-based local error estimators for higher-order exponential operator splitting methods are constructed and analyzed in the context of time-dependent linear Schrödinger equations. The technically involved procedure is carried out in detail for a general three-stage third-order splitting method and then extended to the higher-order case. Asymptotical correctness of the a poster...
متن کاملOperator splitting methods for pricing American options under stochastic volatility
We consider the numerical pricing of American options under Heston’s stochastic volatility model. The price is given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. We propose operator splitting methods for performing time stepping after a finite difference space discretization. The idea is to decouple the treatment of the early exercise const...
متن کاملA High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملA second-order positivity preserving scheme for semilinear parabolic problems
In this paper we study the convergence behaviour and geometric properties of Strang splitting applied to semilinear evolution equations. We work in an abstract Banach space setting that allows us to analyse a certain class of parabolic equations and their spatial discretizations. For this class of problems, Strang splitting is shown to be stable and second-order convergent. Moreover, it is show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Comput. Math.
دوره 84 شماره
صفحات -
تاریخ انتشار 2007